Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sol Phys ; 298(6): 78, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325237

RESUMO

The middle corona, the region roughly spanning heliocentric distances from 1.5 to 6 solar radii, encompasses almost all of the influential physical transitions and processes that govern the behavior of coronal outflow into the heliosphere. The solar wind, eruptions, and flows pass through the region, and they are shaped by it. Importantly, the region also modulates inflow from above that can drive dynamic changes at lower heights in the inner corona. Consequently, the middle corona is essential for comprehensively connecting the corona to the heliosphere and for developing corresponding global models. Nonetheless, because it is challenging to observe, the region has been poorly studied by both major solar remote-sensing and in-situ missions and instruments, extending back to the Solar and Heliospheric Observatory (SOHO) era. Thanks to recent advances in instrumentation, observational processing techniques, and a realization of the importance of the region, interest in the middle corona has increased. Although the region cannot be intrinsically separated from other regions of the solar atmosphere, there has emerged a need to define the region in terms of its location and extension in the solar atmosphere, its composition, the physical transitions that it covers, and the underlying physics believed to shape the region. This article aims to define the middle corona, its physical characteristics, and give an overview of the processes that occur there.

2.
Science ; 318(5856): 1582-5, 2007 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-18063787

RESUMO

The determination of the fine thermal structure of the solar corona is fundamental to constraining the coronal heating mechanisms. The Hinode X-ray Telescope collected images of the solar corona in different passbands, thus providing temperature diagnostics through energy ratios. By combining different filters to optimize the signal-to-noise ratio, we observed a coronal active region in five filters, revealing a highly thermally structured corona: very fine structures in the core of the region and on a larger scale further away. We observed continuous thermal distribution along the coronal loops, as well as entangled structures, and variations of thermal structuring along the line of sight.

3.
Science ; 318(5856): 1585-8, 2007 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-18063788

RESUMO

The Sun continuously expels a huge amount of ionized material into interplanetary space as the solar wind. Despite its influence on the heliospheric environment, the origin of the solar wind has yet to be well identified. In this paper, we report Hinode X-ray Telescope observations of a solar active region. At the edge of the active region, located adjacent to a coronal hole, a pattern of continuous outflow of soft-x-ray-emitting plasmas was identified emanating along apparently open magnetic field lines and into the upper corona. Estimates of temperature and density for the outflowing plasmas suggest a mass loss rate that amounts to approximately 1/4 of the total mass loss rate of the solar wind. These outflows may be indicative of one of the solar wind sources at the Sun.

4.
Science ; 318(5856): 1588-91, 2007 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-18063789

RESUMO

Magnetic reconnection of solar coronal loops is the main process that causes solar flares and possibly coronal heating. In the standard model, magnetic field lines break and reconnect instantaneously at places where the field mapping is discontinuous. However, another mode may operate where the magnetic field mapping is continuous but shows steep gradients: The field lines may slip across each other. Soft x-ray observations of fast bidirectional motions of coronal loops, observed by the Hinode spacecraft, support the existence of this slipping magnetic reconnection regime in the Sun's corona. This basic process should be considered when interpreting reconnection, both on the Sun and in laboratory-based plasma experiments.

5.
Appl Opt ; 46(16): 3156-63, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17514269

RESUMO

The high-spatial frequency roughness of a mirror operating at extreme ultraviolet (EUV) wavelengths is crucial for the reflective performance and is subject to very stringent specifications. To understand and predict mirror performance, precision metrology is required for measuring the surface roughness. Zerodur mirror substrates made by two different polishing vendors for a suite of EUV telescopes for solar physics were characterized by atomic force microscopy (AFM). The AFM measurements revealed features in the topography of each substrate that are associated with specific polishing techniques. Theoretical predictions of the mirror performance based on the AFM-measured high-spatial-frequency roughness are in good agreement with EUV reflectance measurements of the mirrors after multilayer coating.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...